
Height Inference and Enhanced Path Planning for Low-Risk rough Terrain
Traversal

Henry Zhao
Collingwood School, Burnaby, Canada

henry@zlww.com

Keywords: Navigation, Path planning, A-star, Rough terrain, Quadruped robot

Abstract: The problem of path planning through rough and uneven terrain has been studied
extensively in recent decades. However, many such methods are designed to optimize path length,
and are not fit for potentially lower-cost legged robots that may drift or suffer from external
influence. This paper proposes a method for inferring the presence and heights of objects unseen by
camera angles as well as a method to navigate through rough terrain while minimizing risk taken by
a robot. The proposed method utilizes and combines multiple camera viewpoints to fill in areas
blocked by an object, while allowing for additional viewpoints to be appended. The method also
marks out areas that have not yet been seen, allowing a robot to explore said areas, should no other
paths be apparent. The path planning section of this method takes into account a variety of costs,
notably the total elevation gained and lost, as well as the distance from the path to the closest
obstacle. Thus, it prioritizes flat terrain over rough as well as attempting to stay in the middle of two
objects, greatly reducing the risk of collision or falling. The proposed methods have been tested
both in simulated environments as well as integrated into and tested on a small quadruped robot.
The algorithm results in a lowered average distance to obstacles, as well as a lowered total elevation
gained or lost, in return for a longer path length. Even with a 5% lateral drift on the robot, this
algorithm successfully navigates around obstacles without contact.

1. Introduction
Over the past several decades, many engineers and scientists have used animals for clues into

effective robot design, and have developed a diverse set of legged robots. These robots excel at
traversing rough terrain, and are able to adapt to many differing scenarios and environments. For
many real-world applications of legged robots, they must have the capability to traverse and explore
rough and unknown terrain autonomously, using onboard sensors to create a map of the environment.
However, due to limitations such as the robot’s specifications, sensor noise, and sensor range, the
problem of autonomous mapping and path planning remains a difficult and open-ended challenge.

This paper presents a stereo camera based mapping system, combined with a navigational path
planner designed to minimize risks taken by a four-legged robot traversing over rough and uneven
terrain. The method proposed builds on existing methods of mapping and path planning, and uses a
graph- based search method to compute the path with the least cost between the start and end points,
including a cost for the slope risk of the path. The main contribution is the classification of sensor-
unseen areas as unknown, as well as a combination of costs in the path planning algorithm to reduce
the risk of the chosen path, keeping the robot away from obstacles and cliffs, and choosing less
sloped paths.

The proposed approach first generates a 2.5 dimensional height map from a point cloud, and
identifies obstacles. The obstacle map is expanded to compensate for the robot’s width. The method
performs path planning using an enhanced A* search over the 2.5D height map, which keeps in
account the total vertical distance traveled as well as the distances to obstacles along the path. This
path is then simplified and smoothed. The A* was chosen as a base search algorithm due to the grid-
based representation of the environment, as well its efficiency and simplicity. The system has been
tested both on real sensor data and in simulations on a variety of terrain types and environments.

2022 9th International Conference on Advanced Materials and Computer Science (ICAMCS 2022)

Published by CSP © 2022 the Authors 111

Integrated with depth camera and motion control subsystems, this has also been tested on a
quadruped robot autonomously navigating through rough terrain.

Fig.1 Robot Choosing Flat Path over Stairs

The contents of this paper are as follows: section II describes related work. Section III-A
describes the system architecture of the legged robot. The 2.5D height map and obstacle map
construction is described in section III-B. The path planning and smoothing methods are described in
Section III-C. The experimental results are described in section IV, and the conclusions are presented
in section V.

2. Related Works
Path planning methods for finding suitable and optimal paths can be grouped into two main

categories: graph-based approaches, like Djikstra’s algorithm [1], and sampling based algorithms,
like rapidly-exploring random tree (RRT) [2]. Of the graph based approaches, there are classical
algorithms like breadth first search (BFS), depth first search (DFS) and Djiktra’s [1]. There are also
heuristic based algorithms, like the A star (A*) [3] and D star (D*) [4]. In pathfinding, the two
common and well-known algorithms are the A* and D* algorithms. Both algorithms repeatedly
expand from the cell with the lowest cost that has not yet been visited, with the cost typically
designated as the sum of the path length from the start to the cell and the distance from the cell to the
goal. The D* algorithm includes a method for rapid and efficient updating of obstacles and costs,
making it suitable for when new data is being added [4]. A large amount of robotic path planning
systems use either of these two algorithms due to their simplicity and effectiveness, with
modifications to improve efficiency, the quality of the path found, or adapted to higher dimensions
[5], [6].

In order for these algorithms to be used on rough terrain, a method is needed to not only identify
obstacles, but terrain that may be too risky or impossible for a robot to traverse. Dudzik [7] uses a
traversability map method detailed by Kim [8], and uses a gaussian blur to make a map of cells
reachable by the robot’s center of mass, ensuring the robot can walk past obstacles without collisions.
Wang [9] uses a similar method, and expands the obstacles to achieve the same result. These
methods, although effective on flat ground, do not consider the risk a robot takes when attempting to
traverse over sloped or bumpy terrain. Ideally, should a robot have the choice between a sloped path
and a flat path, it should pick the flat path, even if it is longer, to a degree. Gu [10] has determined a
method to create a map of “fuzzy traversability”, marking every cell as either low, medium, or high
risk, or untraversable. This method allows for quick evaluation and relatively fast path planning.
However, it may not capture enough detail. For example, a robot may be unable to decide between
two medium risk paths, even when one is slightly less sloped or bumpy than the other. Gu [11] uses
the slope between two grid cells, described as the distance between their heights, as an additional
cost, allowing the algorithm to trade off between a longer path length and a less sloped path. Görner
[12] also factors in the roughness of the terrain, and sets cells with a slope larger than a threshold to
be untraversable, to prevent the robot from attempting to walk over impossibly steep terrain.
Wermelinger [13] uses slope and roughness to calculate the cost of a foothold, and McCrory [14]
uses a similar method, though combines the foothold cost of positions on the right and left of a cell

112

to create a map of risk levels for the robot’s center of mass. These methods provide an effective path
planning algorithm that chooses lower-risk paths rather than higher-risk but shorter paths. However,
even with the expansion or gaussian blur, the A* or D* algorithm still aims for the shortest path, and
thus makes the path stick as close to walls and corners as possible, thereby ignoring risks from
disturbances or drift. In the case that the robot is not entirely accurate and tends to drift, or is pushed
by an external disturbance, a robot may crash into a wall and lose accurate track of its position, or
even fall down a ledge or hill.

Fig.2 Schematic of the Quadruped Robot

3. Inferences and Path Planning

3.1 System Overview
The robot used in this study is a custom-made quadruped robot designed to be low-cost. The robot

has 12 Dynamixel AX-a12 servos with 3 for each leg. An OAK-D stereo depth camera, in addition
to a VL53L0X time-of-flight sensor are mounted on an MG90S servo, and are used for three
dimensional environmental reconstruction. A schematic of the robot can be seen in figure 2. The
OAK-D has a horizontal field of view of 72 degrees, and an effective range of 0.35 to 38.5 meters.
The VL53L0X has a range of 5 to 120 cm. An IMU, contained in the OAK-D, consists of
gyroscopes, accelerometers, and digital compasses, and is used in conjunction with the depth camera
for localization and stabilizing the robot when on rough terrain. The robot’s control system runs on a
Raspberry Pi 4 through Python 3.7.

The robot takes images with the stereo camera, and creates a point cloud from all images using
localization and mapping, while adding in data from the time-of-flight sensor and IMU. The point
cloud is voxelized to reduce complexity and allow it to be projected onto a 2.5D height map. The
height map is the primary input into the method detailed in this study. The method outputs a path
made of bezier curves, which the robot interprets and follows. A flowchart of this system is shown in
figure 3.

3.2 2.5D and Obstacle Grid Construction
1)Height Inference and Unknowns: To assist the path planning and exploration systems, cells

which have not yet been seen by images from the differing camera positions due to obscurance by
an object or wall must be marked out. This allows the path planning algorithm to treat unknown
areas differently compared to normal objects. This allows the path planning algorithm to treat
unknown areas as potential for further exploration should no path to the goal be apparent.

113

Furthermore, this algorithm infers the height of the unknown areas, repairing missing data from
imperfect point clouds.

Fig.3 Flowchart of the Robotic Control System

The algorithm effectively assumes each object as infinitely deep, unless proven otherwise by
another camera angle. Each cell in the 2.5D height map can be in the field of view of 0…N camera
viewpoints. For each viewpoint, the cell is either directly seen by the camera, or has been obscured
by a cell taller than it between it and the camera position. The algorithm works from every camera
viewpoint, inferring the height of cells within its field of view. Each cell’s camera-wise inferred
height is calculated as either relative to the height of the highest cell collinear to and in between the
current cell and the camera’s position, or the height of the current cell, should no collinear cell be
higher than the current cell’s height. If the height of the highest collinear cell is lower than the
camera’s height, the camera-wise inferred height is linearly relative to the height of the blocking cell
and the camera. Else, the camera-wise inferred height is equal to the blocking cell’s height. This may
underestimate the height of obscured cells, and prevents large holes not stemming from camera
errors from being filled in.

2) Obstacle Boundary Detection: Obstacle boundary detection is used to mark what places a
robot cannot traverse. If a method does not detect obstacle boundaries, and only utilizes the slope in
between two cells as a cost, it is very likely that a path planning algorithm would attempt to traverse
over a very steep slope in order to reach a goal or for a significant reduction in distance.

For obstacle boundary detection, a maximum slope thresh- old must be specified. This threshold
should be specific to a robot’s design, limitations, and payload. This method takes into account the
slope between a cell and its 8 neighboring cells, as in figure 4. If the slope between a cell and its
neighbor, designated as the difference in heights of the cells divided by the distance between the
centers of the two cells, is greater than the threshold, the boundary between the two cells is
considered an obstacle. This method also considers that if a slope is greater than the threshold, and
the neighboring cell is “unknown”, the boundary is marked as an inferred boundary. This means that
the path planning algorithm may explore this boundary to ensure it is present should no other paths
to a goal be apparent. This results in 8 obstacle boundary grids, one for each direction a cell has a
neighbor.

1) Enhanced A star: The A* algorithm is a common path planning algorithm, utilized to find the
shortest path between two nodes. The algorithm works by expanding the unfinished path with the
least cost – determined by the cost from start to the current node, as well as a heuristic distance
function from the current node to the goal. This results in a fast searching algorithm. However, this

114

algorithm only seeks to minimize the path length, and does not work well when slopes and risk need
to be taken into account.

The path, and by extension the robot, stays close to obstacles for a shorter path, increasing the risk
of collision and uncompensatable external influence. As well, this standard algorithm ignores the risk
from traversing over rough and sloped terrain.

Thus, an enhanced version of the A* algorithm was developed to better prioritize risk over path
length. At every iteration of the loop, this algorithm determines the most effective path to extend, or
more specifically, the path which minimizes:

cost(n) = a × g(n) + b × h(n) – c × f(n) + d × k(n) (1)
where n is the last node on the path being checked. A, b, c, and d are weights that should be

adjusted to balance between path length, distance to obstacles, and path roughness. G(n) is the cost
from the start to n, designated as the euclidean path length. Specifically, it is calculated as:
𝑔𝑔(𝑛𝑛) = ∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃 𝑖𝑖 ,𝑃𝑃 𝑖𝑖+1)𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ − 1

𝑖𝑖=1 (2)
where Pi is the ith node on the current path to node n. h(n) is the heuristic function for the cost

from n to the goal, set as the euclidean distance from n to the goal. F(n) is the euclidean distance
between the current path to n and the closest obstacle. This is represented with:
𝑓𝑓(𝑛𝑛) = min{𝐷𝐷1 …𝐷𝐷𝑘𝑘}, 𝐷𝐷𝑖𝑖 = min

𝑗𝑗=1→𝑜𝑜𝑜𝑜𝑜𝑜
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑃𝑃𝑖𝑖 ,𝑂𝑂𝑗𝑗�� (3)

115

Fig.4 Neighboring Cells to Check for Obstacle Boundaries

where Pi is the ith node on the current path to node n, obs is the amount of boundaries marked as
“obstacle”, and O is the set of all boundaries marked as “obstacle”. This makes the algorithm prefer
paths which are further from obstacle boundaries, preventing cut corners and reducing the amount of
turns. K(n) is the cost to traverse over the terrain from the start to n, calculated as the sum of slopes
on the path, or:
𝑘𝑘(𝑛𝑛) = ∑ �𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑖𝑖 − 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 𝑖𝑖+1 �𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ − 1

𝑖𝑖=1 (4)
where Pi is the ith node on the current path to node n. This makes it so the algorithm would prefer

a flat path over a bumpy or sloped path.
3)Path Postprocessing: The output of the A* algorithm is a list of nodes, denoting the ideal path

found. However, due to the grid-constrained search of the A* algorithm, it is impossible to
represent straight lines in angles not aligned with the grid’s cardinal or diagonal directions. As well,
every grid cell that is passed through is represented as a point on the path, leading to many
redundant points and high frequency, low amplitude noise in lines not aligned with the grid’s
cardinals or diagonals. As such, before such a path can be utilized by a robotic system, some post
processing operations must be applied to reduce or remove the noise and redundant points.

The first post processing operation used is the Ramer- Douglas-Peucker algorithm. It recursively
divides the path by the node with the largest distance away from the line connecting the start and end
nodes of a section. If the node is further than a threshold, it is kept, and the path is divided. If not,
then the node is deleted. This algorithm removes most of the redundant points in the path, and with it
removes a large portion of the noise.

Fig.5 An Obstacle Course Containing rough and Flat Paths, a Bridge, and Open Area with

Obstacles Used to Test the Unknowns Inference and Path Planning Algorithms.
The second post processing operation is used both to further smoothen out the path as well as to

adapt the path into a format that can be used by the robot’s gait control algorithm. The operation
converts the path into a set of quadratic bezier curves, by designating the midpoints of two
consecutive path segments as the endpoints of the curve, and the junction between the path segments
as the control point.

4. Results
The presented method of detecting and inferring unknowns, as well as the enhanced method for

116

rough-terrain path planning were tested on a variety of simulated and real-life terrain. Figure 5 shows
the construction of the simulated course, including paths through rough and flat terrain (section A), a
bridge over a gap (section B), and an open area with obstacles (section C), totaling 7m by 6m. The
start of the course is denoted with the green circle, and the goal the red cross. The goal of this course
is to travel from the starting point to the goal, while minimizing the risks taken by a hypothetical
robot.

4.1 Height Inference and Unknowns
As can be seen in figure 6b, areas not explicitly seen by the cameras, marked in yellow, have had

their heights inferred, creating boundaries. As well, holes due to imperfections in data, as can be seen
in the top left corner of figures 6a and 6c, have been filled. However, as in the case of section B, the
width of the bridge has been overstated by the algorithm due to the prospective nature of cameras
and LIDARs. Thus, unless an edge can be explicitly seen by a camera, the unknowns algorithm will
likely attempt to extend the edge both horizontally and depth-wise relative to the camera, causing the
overstatement of the width and length of objects. As such extended areas are marked as unknown,
additional data can be gathered closer to the edge in order to resolve this inference issue.

4.2 Path Planning
Figure 7 shows a comparison between a standard A* path planner and the proposed enhanced

path planner traversing over and around various obstacles and terrain. As evident in figure 7a, the
standard A* always aims for the shortest path, regardless of risk. In section A, the standard A*
chooses to traverse over a sloped section of terrain in return for a shorter path. In section B, the path
stays extremely close to the edge of the bridge, and in section C, the path attempts to travel through a
small gap, again in return for a shorter path. On the contrary, the enhanced path planner aims for a
less risky path, as shown in 7b. It chooses a flat path, though it is longer, and attempts to maintain in
the center of the bridge, reducing the risk of falling off. It also avoids the small passageway in
section C, instead taking a longer path. Quantitative data can be seen in table 1, where the standard
A* path has a shorter path length than the enhanced path planning, though has a higher total
elevation change and lower average distance to obstacles. This means that throughout the path, the
standard A* gains and loses more elevation on average than the enhanced path, as well as staying
closer to obstacles and non-traversable areas.

Fig.6 The Original Raw Height Map, Areas Which Have Had Their Heights Inferred, and the

Complete Height Map with Inferred Heights.

a)Standard A* b) Enhanced A*

Fig.7 Standard a* Path Versus Enhanced a* Path

117

Table 1: Quantatative Performance of Standard Versus Enhanced a*.
TABLE 1: Quantatative Performance of Standard Versus Enhanced A*.
Path planning algorithm Path length (m) Total elevation change (m) Average distance to

obstacle (m)
Standard A* 14.78 1.865 0.180
Enhanced A* 20.18 0.557 0.535

4.3 Real World Testing
Real-world testing has been conducted by integrating the proposed methods into the quadruped

robot described in the system overview. Due to the low-cost nature of the robot, the motor precision
causes the robot to drift approximately 5%. A variety of situations have been tested to determine the
reliability of the path planning algorithm when applied to an imperfect system. As shown in figure 8,
the robot is able to completely avoid obstacles on the path to the goal even with the aforementioned
drift. In figure 1, the robot chooses a flat path over a sloped path, while also maintaining distance
from the wall of the sloped path, despite the drift.

5. Conclusion
This paper presents a novel method for inferring obstacles from incomplete data, as well as an

enhanced A* algorithm designed to reduce risk taken by a robot, thus making it specialized for rough
terrain traversal. The height of a cell in the height map is inferred based on the tallest object which
obscures it from a camera viewpoint, and inferred heights from multiple viewpoints are combined to
create a holistic estimate of the heights of unseen cells. This assists in reducing holes left by
incomplete data, as well as marking out what areas have not yet been investigated and allowing for
the introduction of additional data. In addition, slopes too steep to be traversed are marked out. As
for the enhanced A* algorithm, a slope cost to reduce the favorability of rough terrain, and an
obstacle distance cost to prevent a path from taking more risk by attempting to stay near obstacles
were added. Finally, the path is simplified using the Ramer-Douglas-Peucker algorithm and
smoothed into a set of bezier curves. The proposed method has been tested and has shown its
effectiveness both in simulation as well as on a low-cost quadruped robot. Even with 5% lateral drift,
the robot was able to autonomously navigate around obstacles without contact.

Fig.8 Robot Avoiding Boxes by Walking in s-Curve. the Blue Line Shows the Detected Path, the

Green Line Shows the Already-Walked Path.
For further improvement, a roughness cost to quantify the risk of traversing over terrain with

high-frequency variations in height, such that the variations cannot be captured within one grid cell,
would assist a robot in deciding between a flat path and a roughly flat but rocky path. As well, a
slope cost that takes into account the width of the robot may assist in further reducing risk taken by a
robot in the case that the ground roughness greatly differs throughout the width of the robot. Both
these improvements would continue to reduce risk taken by a robot.

References
[1] W. Dijkstra, “A note on two problems in connexion with graphs,” NUMER MATH, vol. 1, pp.
269-271, 1959.

118

[2] S. M. LaValle, “Rapidly-exploring random trees: a new tool for path planning,” The annual
research report, 1998
[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp.
100–107, 1968, doi: 10.1109/TSSC.1968.300136.
[4] A. Stentz, “Optimal and efficient path planning for partially-known environments,” in
Proceedings of the 1994 IEEE International Con- ference on Robotics and Automation, 1994, pp.
3310–3317 vol.4. doi: 10.1109/ROBOT.1994.351061.
[5] J. Carsten, D. Ferguson, and A. Stentz, “3D Field D: Improved Path Planning and Replanning in
Three Dimensions,” 2006 IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems.
IEEE, Oct. 2006. doi: 10.1109/iros.2006.282516
[6] F. Duchonˇ et al., “Path Planning with Modified a Star Algorithm for a Mobile Robot,” Procedia
Engineering, vol. 96. Elsevier BV, pp. 59–69, 2014. doi: 10.1016/j.proeng.2014.12.098.
[7] T. Dudzik et al., “Robust Autonomous Navigation of a Small-Scale Quadruped Robot in Real-
World Environments,” 2020 IEEE/RSJ Inter- national Conference on Intelligent Robots and
Systems (IROS). IEEE, Oct. 24, 2020. doi: 10.1109/iros45743.2020.9340701.
[8] D. Kim et al., “Vision Aided Dynamic Exploration of Unstructured Terrain with a Small-Scale
Quadruped Robot,” 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2020. doi: 10.1109/icra40945.2020.9196777.
[9] H. Wang, S. Lou, J. Jing, Y. Wang, W. Liu, and T. Liu, “The EBS-A* algorithm: An improved
A* algorithm for path planning,” PLOS ONE, vol. 17, no. 2. Public Library of Science (PLoS), p.
e0263841, Feb. 17, 2022. doi: 10.1371/journal.pone.0263841.
[10] J. Gu, Q. Cao, and Y. Huang, “Rapid Traversability Assessment in 2.5D Grid-based Map on
Rough Terrain,” International Journal of Advanced Robotic Systems, vol. 5, no. 4. SAGE
Publications, p. 40, Nov. 01, 2008. doi: 10.5772/6233.
[11] J. Gu and Q. Cao, “Path planning for mobile robot in a 2.5- dimensional grid-based map,”
Industrial Robot: An International Jour- nal, vol. 38, no. 3. Emerald, pp. 315–321, May 03, 2011.
doi: 10.1108/01439911111122815.
[12] M. Go ̈rner, A. Chilian, and H. Hirschmu ̈ller, “Towards an Autonomous Walking Robot for
Planetary Surfaces,” Aug. 2010. [Online]. Available: https://elib.dlr.de/67912/
[13] Wermelinger,Martin,Fankhauser,Pe ́ter,Diethelm,Remo,Kru ̈si,Philipp Andreas, Siegwart,
Roland, and Hutter, Marco, “Navigation Planning for Legged Robots in Challenging Terrain,” ETH
Zurich, 2016, doi: 10.3929/ETHZ-A-010686519.
[14] S. McCrory, B. Mishra, J. An, R. Griffin, J. Pratt, and H. E. Sevil, “Humanoid Path Planning
over Rough Terrain using Traversability Assessment.” arXiv, 2022. doi:
10.48550/ARXIV.2203.00602.

119

	1. Introduction
	2. Related Works
	3. Inferences and Path Planning
	3.1 System Overview
	3.2 2.5D and Obstacle Grid Construction
	1)Height Inference and Unknowns: To assist the path planning and exploration systems, cells which have not yet been seen by images from the differing camera positions due to obscurance by an object or wall must be marked out. This allows the path plan...
	2) Obstacle Boundary Detection: Obstacle boundary detection is used to mark what places a robot cannot traverse. If a method does not detect obstacle boundaries, and only utilizes the slope in between two cells as a cost, it is very likely that a path...
	3)Path Postprocessing: The output of the A* algorithm is a list of nodes, denoting the ideal path found. However, due to the grid-constrained search of the A* algorithm, it is impossible to represent straight lines in angles not aligned with the grid’...

	4. Results
	4.1 Height Inference and Unknowns
	4.2 Path Planning
	4.3 Real World Testing

	5. Conclusion

